Learning Latent Permutations with Gumbel-Sinkhorn Networks
نویسندگان
چکیده
Permutations and matchings are core building blocks in a variety of latent variable models, as they allow us to align, canonicalize, and sort data. Learning in such models is difficult, however, because exact marginalization over these combinatorial objects is intractable. In response, this paper introduces a collection of new methods for end-to-end learning in such models that approximate discrete maximum-weight matching using the continuous Sinkhorn operator. Sinkhorn operator is attractive because it functions as a simple, easy-to-implement analog of the softmax operator. With this, we can define the Gumbel-Sinkhorn method, an extension of the Gumbel-Softmax method (Jang et al., 2016; Maddison et al., 2016) to distributions over latent matchings. We demonstrate the effectiveness of our method by outperforming competitive baselines on a range of qualitatively different tasks: sorting numbers, solving jigsaw puzzles, and identifying neural signals in worms.
منابع مشابه
Categorical Reparameterization with Gumbel-Softmax
Categorical variables are a natural choice for representing discrete structure in the world. However, stochastic neural networks rarely use categorical latent variables due to the inability to backpropagate through samples. In this work, we present an efficient gradient estimator that replaces the non-differentiable sample from a categorical distribution with a differentiable sample from a nove...
متن کاملIclr 2017 C Ategorical R Eparameterization with G Umbel - S Oftmax
Categorical variables are a natural choice for representing discrete structure in the world. However, stochastic neural networks rarely use categorical latent variables due to the inability to backpropagate through samples. In this work, we present an efficient gradient estimator that replaces the non-differentiable sample from a categorical distribution with a differentiable sample from a nove...
متن کاملRanking via Sinkhorn Propagation
It is of increasing importance to develop learning methods for ranking. In contrast to many learning objectives, however, the ranking problem presents difficulties due to the fact that the space of permutations is not smooth. In this paper, we examine the class of rank-linear objective functions, which includes popular metrics such as precision and discounted cumulative gain. In particular, we ...
متن کاملNear-linear time approximation algorithms for optimal transport via Sinkhorn iteration
Computing optimal transport distances such as the earth mover’s distance is a fundamental problem in machine learning, statistics, and computer vision. Despite the recent introduction of several algorithms with good empirical performance, it is unknown whether general optimal transport distances can be approximated in near-linear time. This paper demonstrates that this ambitious goal is in fact...
متن کاملBrenier approach for optimal transportation between a quasi-discrete measure and a discrete measure
Correctly estimating the discrepancy between two data distributions has always been an important task in Machine Learning. Recently, Cuturi proposed the Sinkhorn distance [1] which makes use of an approximate Optimal Transport cost between two distributions as a distance to describe distribution discrepancy. Although it has been successfully adopted in various machine learning applications (e.g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1802.08665 شماره
صفحات -
تاریخ انتشار 2018